ARTIFICIAL REEFS

A POTENTIAL NATURE-BASED SOLUTION TO PROTECT THE RI SHORELINE FROM EROSION

Annette Grilli & Stephan Grilli

Elin Schuh, and many others March 4, 2025

BACKGROUND

- Artificial Reefs/submerged-detached breakwaters have been successfully implemented worldwide to protect eroding shorelines, including in the US, sometimes in combination with beach renourishment ("perched beaches")
- See, e.g., New York "Living Breakwaters Project" (design/implementation, 2019-2024)

SUCCESS STORIES

Romestia : perched beach since 1990 [Ferantet al., 1993]

"Beach stabilized for 3 decades"

Pellestrinænicæerched beach since 1995 [Bellotti, Franco, diRisio, 1999]

"Beach stabilized for 3 decades"

References

AgardiT., 2023 Gray leads to green in the blue: building infrastructure to enhance of habitat. Conference Coastal Engineering, Sidney, December 2022

Ferrante, A., Franco, L. and Boer, S., 1993. Modelling and monitoring of a perche Lido di Ostia (Rorce)astal Engineering (p1993305318).

Reguer B.GStorlazz C.D., Gibbs, Shopel.B., Cole, A.D., Cumming, K.A. and Beck, 2021. The value of US coral reefs for flood rislature ust in a list pp.688 698.

Regueret al. ,202 Reefen SeREEFS: hybrid biological and engineered reef structure Gold Coast, Australitaticial Reefs [Tuner, 2002], Urbased Coastal Defense. ICCE2024, September 2024 Rome, IT.

2006]: +20 m beach width attributed to reef Turner, I.L., 2006. Discriminating modes of shoreline respected offshore between 200003

Barbadossubmerged breakwated gardilCCE 2022] "Grepecomes Green in the Blue"

structuresournal of waterway, port, coastal, and ocean 3000 internio 091.

Schuh, E., Grilli, Großetsch., Grilli, S.T., CrowBeinisDanStemper. 2023. Assessing therphodynareixponse of a New Englandabreachystem to an artificial reef.Coastal Engineen840p.104355.

SUCCESS STORIES

Rome-Ostia : perched beach since 1990 [Ferante et al., 1993]

"Beach stabilized for 3 decades"

Pellestrina-Venice: perched beach since 1995 [Bellotti, Franco, diRisio, 1999]

"Beach stabilized for 3 decades"

- Cold Coast, Australia Artificial Reefs [Tuner, 2002, 2006] : +20 m beach width attributed to reef Perched beack m submerged detached reef with -1.5 m on depth/400 m with 1.33 Mamd nourishmen between 200003
- Barbados submerged breakwater [Tundi Agardi, ICCE 2022] "Grepecomes Green in the Blue"

from land quarry; no g/toins.m (1 year), Tide 0.4

"Required only occasional minor maintenance [Franco, 2/26/2025]

ERISTING SHORE I

NEW SHORELIN

UARRY SAND 0 3-1 3mm D50:1

SUCCESS STORIES

Rome-Ostia : perched beach since 1990
 [Ferante et al., 1993]

"Beach stabilized for 3 decades"

Pellestrina-Venice: perched beach since 1995
 [Bellotti, Franco, diRisio,1999]

"Beach stabilized for 3 decades"

- Gold Coast, Australia Artificial Reefs [Tuner, 2002, 2006] : +20 m beach width attributed to reef between 200003
- Barbados submerged breakvater [Tundi Agardi, ICE
 2022] "Grepecomes Green in the Blue"

Perchedbeach partlysubmerge**g**roynesand parallelubmerg**ea**rriealon@0kmshorevith4 Mm² sanchourishmefinomoffshorebarriecrest at-1.0 m H_s = 3.5 m(1 year),Tidel m

"Losses 10%!"

[Franc2/26/2025

VALUING REEFS IN COASTAL RISK REDUCTION

 BENEFIT PROVIDED BY REEFS IN THE US (PER YEAR) : 1.8 B\$

HAWAII & FLORIDA:
 10 M\$/KM

[Reguer@eck, et al., 2021. The value of US coral reefs for flood risk reduction/*Nature Sustainability.*]

HOW IS A REEF PROTECTING THE SHORELINE?

ARTIFICIAL REEFS (AR) – HOW DO THEY WORK?

An AR

'Entails using a little finesse to control rather than resist wave activity "

Ahrens and Cox (1990)

UNCERTAINTIES AND SITE-SPECIFIC PARAMETERS

- w: Width
- *x* : Distance from shore
- *h* : Submergence
- d : Depth

- Tidal Range
- Sediment size
- Wave Height
- Wave Period
- Wave Direction

CURRENT NATURE-BASED SOLUTION PROJECTS AT URI

- NOAA Modeling, visualizing, and communicating nor'easter and hurricane threats with s support coastal manageriteint New England 12025)
 TEAMGinis, Grilli. A., Grilli S., Walsh, Stemple*, Rubinoff, Damon, Duhaime [URI, *Pen and National Park partners [Babson, Lafrance, Smith] + students
- NOAA Quantification and optimization-basetuse lutions for mitigating coastal vulnerability and r(30/232025)
 - TEAMGinis, Grilli A., Grilli S., Walsh, Stemple*, Rubinoff, Damon, Duhaime [URI, *Pen students
- SEAGRANCTormbining monitoring and numerical simulations of NNB solutions to coastal erosiorBlock Island, a numerical tegolite 026)

TEAM : Grilli A., Grilli S., **Øakæt**ø[†], **D**amon, Baxter, Spaulding [URI, Eastern Connecticut State University]

FINESSE ?

Energy transmitted 10-20% incident energy

PREVENT EROSIVE CURRENTS ALONG SHORELINE

MORPHOLOGICAL RESPONSE OF THE RI SHORELINE TO AN ARTIFICIAL REEF

	Coastal Engineering 184 (2023) 104355
	Contents lists available at ScienceDirect
272 C	Coastal Engineering
ELSEVIER	journal homepage: www.elsevier.com/locate/coastaleng

Assessing the morphodynamic response of a New England beach-barrier system to an artificial reef

Elin Schuh^a, Annette R. Grilli^{a,*}, Felix Groetsch^a, Stephan T. Grilli^a, Deborah Crowley^b, Isaac Ginis^b, Peter Stempel^c

^a Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA

^b Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA

^c Stuckeman School of Architecture and Landscape Architecture – Institutes of Energy and Environment, Pennsylvania State University, University Park, PA 16802, USA

Designed 9 reef concepts
 based on Ranasinghe's
 methodology [Ranasinghe, 2])10

 Concept: "optimal design based on local wave climate"

 Numerical simulations along *RI's South Shore*

Team: Ginis, Grilli & Grilli, Crowley, Walsh, Stempel, Rubinoff, Duhaime, Damon, Babson, Lafrance

COMPUTATIONAL DOMAIN AND REEF CONCEPTS

"Modeling, Visualizing, and Communicating Nor'easter and Hurricane Threats with Sea-level Rise to Support Coastal Management within New England"

13

SIMULATED CURRENTS - SANDY-like STORM

NOAF

MORPHOLOGICAL CHANGES – SANDY-like STORM

KEY IMPACTS ON THE SHORELINE

STORM EVENTS

- All reef concepts show a reduced beach erosion
- Reef concepts sited further away from shore are more efficient in controlling beach erosion

CALM WEATHER

- Gaps between reef segments control erosion/accretion
- Small gap concepts enhance sand deposition along the shoreline
- Large gap concepts [80 m]
 might enhance local erosion

MORPHOLOGICAL RESPONSE TO EXTREME EVENT

EXAMPLE:
 Charlestown

Charlestown Breachway/ Beach access road,

12/23/22 Nor'easter

MORPHOLOGICAL RESPONSE TO EXTREME EVENT

STUDY OF THE CHARLESTOWN BREACHWAY AREA TO IMPROVE ITS RESILIEN "Quantification and optimization-Bfalsladuse lutions for mitigating coastal vulnerability and risk"

THE UNIVERSITY OF RHODE ISLAND

[Visualization, P Stempel]

MORPHOLOGICAL RESPONSE TO EXTREME EVENT

STUDY OF THE CHARLESTOWN BREACHWAY AREA TO IMPROVE ITS RESILIENCE

"Morphodynamized eling of beach renourishmentike Stordy for 40h" NO RENOURISHMENT WITH RENOURISHMENT

ICCE 2024 ROME September 8-13 REEF with. NATURE-BASED FEATURES

ICCE 2024

EXPERIMENTAL STUDY OF WAVE OVERTOPPING ON BREAKWATERS CO-LOCATED WITH SEAWEED AQUACULTURE SYSTEMS (kelp)

Filipe Miranda, Hydraulics, Water Resources and Environmental Division, Department of Civil Engineering, Faculty of Engineering of the University of Porto,

ARTIFIAL REEFS and HYBRID REEFS

Thank you

Contact: annette_grilli@uri.edu grilli@uri.edu

TRANSMISSION COEFFICIENT

SCATTHE LIN 12 22 RSITY OF RHODE ISLAND

STORM WAVE CLIMATE SUBAERIAL EROSION REDUCTION

 $\Delta \, \mathsf{EV} \, [\%]$

AVERAGE WAVE CLIMATE MODE OF SHORELINE RESPONSE

SCHUHE AND SCHUHE SLAND